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ABSTRACT 
 

We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-
dimensional radiation diffusion equation.  It uses recently introduced piecewise linear weight and 
basis functions in the finite elem ent approximation and it can be appl ied on arbitrary polygonal 
(2D) or polyhedral (3D ) grids. W e first dem onstrate some analytical properties of the PWL 
method and perform a simple m ode analysis to compare the PWL method with Palmer’s finite-
volume method and with a bilinear continuous finite  element method.  We then show that this  
new PWL method gives solutions comparable to those from Palmer’s.  However, since the PWL 
method produces a symmetric positive definite coefficient matrix, it should be substantially more 
computationally efficient than Palm er’s method, which produces an asymm etric matrix.  W e 
conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on 
unstructured grids. 

 
KEYWORDS:  diffusion, arbitrary polyhedral grids, piecewise linear finite element 

1. INTRODUCTION 
Several methods have been developed to solv e the radiation diffusion equation on arbitrar y 
polyhedral (3D) and polygonal (2D) meshes.  A finite-volume (FV) method developed by Palmer 
[1,2] divides each cell into “co rner” subcells and enforces conservation on each dual cell, where 
a dual cell is the union of corners that touch a vertex.  This method is second-order accurate, with 
relatively small error norms, and is exact on any grid if the exact solution is linear in the position 
variables.  However, Palm er’s method does not generate a symmetr ic coefficient matrix, so the 
matrix system is (rela tively) computationally expensive to store and solve.  W achspress 
previously developed rational-polynomial basis functions [ 3] that can be applied to polyhedral 
cells in a finite-element method (FEM).  His fu nctions have the advantage that a Galerkin FEM 
formulation will yield a symmetric positive definite (SPD) matrix, but the disadvantage that the 
basis-function integrals must be done numerically. 
 
In this work  we apply a rela tively new FEM basis function – the “Piece Wise Linear” (PW L) 
function [4] – to the radiation diffusion equati on on arbitrary polygonal a nd polyhedral meshes.  
The goals are to gain an  SPD coefficient matrix, retain the s implicity and accuracy of Pal mer’s 
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finite-volume method, and avoid the num erical integrations that plague W achspress’s method.  
As part of our development we show that in m ost cases Palmer’s method is, in fact, a FEM with 
PWL basis functions, but with Pe trov-Galerkin weighting.  (The weight functions are constants 
over dual cells.)  W e then show that the PW L method produces a well-posed discrete problem , 
and we show that the PWL method will have sec ond-order convergence properties.  To further 
characterize the m ethods we perform ed a si mple mode analysis on the lum ped and unlum ped 
PWL methods, Palm er’s method, and the lu mped and unlum ped bilinear continuous finite 
element methods (BLC). We compare our Gale rkin PWL method against Palm er’s method on 
multiple test problems.  W e find that our m ethod meets all of  our goals:  it yields accurac y 
comparable to Palm er’s method, produces an SPD  matrix, and involves only very sim ple 
integrations. 
 
We remark that this is an active field of res earch, with methods constantly under developm ent.  
For example, Morel has proposed  a cell-centered FV m ethod for polyhedral cells [5], and 
support-operator methods have been proposed by Kuznetsov et al. [6].  We do not claim that our 
PWL FEM is superior to these m ethods for all problems.  Further research is needed to 
determine which methods are best for different applications. 
 

2. DEVELOPMENT 

2.1 Introduction 
An asymptotic limit of the ra diation transport equation is a tim e-dependent radiation 
conservation equation [7]: 

 ( ) ( )( ) ( ) ( )( ) ( )
4 40 0, , ,

3 R

aca T r t T r t Q r t
dt σ
∂

− ∇ ∇ =
GG G Gi , (1) 

For simplicity we express Eq. (1) as 

 ( ) ( ) ( )1 , , ,E r t D E r t Q r t
c dt

∂
− ∇ ∇ =
G GG G Gi  (2) 

where E is the rad iation energy density, Q is the source, and D is a diffusion coefficient.  We 
begin discretizing Eq. (2) by applying a sim ple fully-implicit Euler approximation to the tim e 
derivative, which results in 

 
( ) ( )( )

( ) ( )
1

11
n n

n n
E r E r

D E r Q r
c t

+
+

−
− ∇ ∇ =

∆

G G
G G G Gi , (3)  

where the n superscripts represent the time-step index.  In Eq.(3), we solve for En+1 to obtain a 
diffusion equation. 

 ( ) ( ) ( )1 1n n nD E r E r S rσ+ +−∇ ∇ + =
G G G G Gi , (4) 

where 



 

Page 3 of 24 

 1
c t

σ =
∆

  (5)  

and 

 ( ) ( ) ( )1n n nS r Q r E r
c t

= +
∆

G G G . (6) 

Eq. (4) is the final form of t he steady state diffusion equation to which we will apply all spatial 
discretizations.  We also define the net current vector: 

 F D E= − ∇
G G

. (7) 

2.2 Galerkin PWL FEM 

To apply an FEM to the  diffusion equation, we f irst multiply the equation by a weight f unction 
and integrate it over the problem domain.  If the i-th weight function is nonzero only on cells that 
touch the i-th vertex, then we have  

 ( ) ( ) ( ) ( )3 0i
z at i

d r w r D E r E r S rσ⎡ ⎤−∇ ∇ + − =⎣ ⎦∫
G G G G Gi , (8) 

where z denotes cells (which we sometimes call “zones”).  The divergence theorem produces: 

 ( ) ( ) ( ) ( ) ( )( )2 3 ( ) 0i i i
z at i z at i

d r w r n F d r D E r w r w r E r S rσ
∂

⎡ ⎤+ ∇ ∇ + − =⎣ ⎦∫ ∫
G G GG G G G G G Gi i . (9) 

The first term is zero if the cells over which the equation is integrated are not on the boundary of 
the domain.  We ignore it in the remainder of this development.  An approximation can be made 
for E in terms of known basis functions: 

 ( ) ( )j j
all j

E r E b r= ∑G G , (10) 

which results in  

 ( ) ( ) ( ) ( ) ( )3 3( )j j i j i i
j z at i z at i

E d r D b r w r b r w r d r w r S rσ
⎧ ⎫⎪ ⎪⎡ ⎤∇ ∇ + =⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭

∑ ∫ ∫
G GG G G G G Gi . (11) 

Eq. (11) is N equations for N unknowns.  Given our assumpti on of one weight function per 
vertex, N is the number of vertices in the mesh. 
 
A Galerkin FEM sets  wi = bi.  It is not difficult to  show that this yields a symmetric positive-
definite matrix.  In this  work we develop a Galerk in FEM that em ploys the piece wise linear 
(PWL) weight and basis function s developed recently by Stone an d Adams [4].  In the 
development of vertex-centered m ethods for arb itrary polyhedral cells, each polyhedral cell is 
divided into subcell volum es called sides, corners, and wedges.  A side is a  tetrahedron made 
from two adjacen t vertices, the zone center, an d a face ce nter.  A corner, which  will be  used 
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primarily in the developm ent of Palmer’s finite volume method, is defined as the union of all 
half-sides that touch a vertex in one zone.  A wedge is defined to be a half side.  See Figures 1, 2, 
and 3 for depictions of side subcells, corner subcells, and wedges in a hexahedral cell.  
 

 
 

Figure1:  Side in a hexahedral cell 
   

 
 

Figure 2:  Corner in a hexahedral cell 
 

 
 

Figure 3:  Wedge in a hexahedral cell 
 
The PWL function centered at vertex j can be written in three dimensions as: 

 , ,( ) ( ) ( ) ( )j j f j f z j z
faces at j

b r t r t r t rβ α= + +∑G G G G , (12) 

where the t functions are standard linear functions defined tetrahedron by tetrahedron.  For 
example, tj equals 1 at the j-th vertex and decreases linearly to zero on all other vertices of each 
side that touches point j.  tz is unity at the cell midpoint and zero at each face midpoint and each 
cell vertex.  tf is unity at the face midpoint and zero at the cell midpoint and at each of the face’s 
vertices.  The αz and βf are weights that give the cell and face midpoints as weighted averages of 
their vertices: 

 ,
@

 cell midpointz z j j
j z

r rα≡ = ∑G G ; (13) 

 ,
@

 cell midpointf f j j
j f

r rβ≡ = ∑G G . (14) 
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Each basis function is piecewis e linear on each  side, which m akes integration over sides  
straightforward.  (Note that th e gradient of a basis function is constant on a side.)   Figure 4 
shows a plot of a PWL basis function for a two-dimensional rectangular cell.  

 
Figure 4:  2D Piecewise Linear Basis Functions 

 
The definitions in Eqs. (12)-(14 ) guarantee tha t any linea r function of ( x,y,z) can be exactly  
represented as an expansion in these basis functions.  (This sub tlety is what m akes the method 
work.  Effectively, the functions generate interpolated values at cell and face midpoints, in such a 
way that the interpolated values are perfect for linear functions.) 
 
Our Galerkin FEM uses PW L functions for the w and b in the general equation above, with one 
exception: we lump the “mass matrix.”  That is, we make the replacement: 

 ( ) ( ) [ ]3 3

@ @
j i ijlump

z i c i

d r b r w r d rσ δ σ⎡ ⎤ ⎯⎯⎯→⎣ ⎦∫ ∫ , (15) 

where c refers to a “corner” subcel l.  On orthogonal grids with σ constant in each cell, this is 
equivalent to standard FEM m ass-matrix lumping, because the volume of the corner at each  
vertex and the integral of the weight function over the cell both equal 1/8 of the cell volum e (or 
1/4 of the cell area in 2D).  On general g rids, however, Eq. (15) is not equivalent to standard 
mass-matrix lumping.  W e choose this non-s tandard lumping so that our source and collis ion 
terms are identical to th ose in Palmer’s method, thus allowing our study to focus on different 
treatments of the diffusion term.   
 
This completes the def inition of our new m ethod (except for boundary conditions, which are 
straightforward).   
 

2.3 Palmer’s Finite-Volume Method 

Palmer’s method is developed by dividing each cell into corners,  defining dual cells to be the 
union of corners at each  vertex, and enforcing conservation over these d ual cells.  T he gradient 
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of the scalar flux is taken to be  constant within each wedge subcell, and the cell-center scalar 
flux is an interpolant of the vertex scalar fluxes, defined such that it is exact for functions that are 
linear in x, y, and z.  The method enforces continuity of pa rticle flow (the normal component of 
the current) across each dual cell boundary.  See references [1] and [2] for more details. 
 
It is interesting to note that in most cases Palmer’s FV method is equivalent to a Petrov-Galerkin 
FEM with PW L basis functions, with the mass- matrix lumping defined above, and with a 
constant diffusion coefficient in each side subcell volume.  The weight functions for this case are 
given by: 

 ( )
1,  any corner that touches vertex ,
0, otherwise.i

r i
w r

∈⎧
= ⎨

⎩

G
G  (16) 

As far as we know, this has not been previously observed.  This illuminates the close connection 
between Palmer’s method and our Galerkin FEM, and it also may permit Palmer’s method to be 
better understood and analyzed.  The exceptions to  this interpretation occur when the diffusion 
coefficient, D, is allowed to vary within a cell.  In such cases, Palm er’s method does not assume 
that E varies linearly within each side, but instead allows E’s slope to change so that n D E• ∇

GG  is 
the same in both wedges where they meet inside one side. 
 
Both methods should be exact (within the lim its of roundoff error) if  the solution is a linear 
function of x, y, and z, regardless of how distorted the spatial cells become.  (We test this below.)  
This follows from the construction of the PWL basis functions. 

 

3. ANALYSES OF PWL AND RELATED METHODS 
 

3.1 Well-Posedness 

Using the Lax-Milgram Lemma, we can sho w that the PW L discretization of the diffusion 
equation results in a well-posed di screte problem.  This discrete  problem is derived from  the 
weak formulation of the diffusion equation: 

 

( ) ( )1 1
0 0

,

and  ,

d v u d vu d v f

u H v H

λ
Ω Ω Ω

Ω∇ ∇ + Ω = Ω

∈ Ω ∀ ∈ Ω

∫ ∫ ∫
G G
i

 (17) 

where ( )1
0H Ω  is a Hilbert space with the norm: 

 ( ) ( )1 2 2
0

1/ 22 2
H L Lw w wΩ = ∇ + . (18) 

Here λ plays the role of D
σ .  Also for simplicity, define 
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( )

( )

,a u v d v u d vu

S v d v f

λ
Ω Ω

Ω

≡ Ω∇ ∇ + Ω

≡ Ω

∫ ∫

∫

G G
i

 (19) 

The Lax-Milgram Lemma [8] states that a problem is well-posed (a solution exists and is unique) 
if  

1. The weight and basis (or test and trial) functions are in a Hilbert space, H 
2. a(u,v) is a bilinear form on H 
3. a(u,v) is bounded 
4. a(u,u) is coercive 
5. S(v) is linear and bounded 

The first two elements of the lemma are obviously satisfied.  To prove the third element, we start 
by taking the absolute value of a(u,v) and writing the integrals in terms of norms. 

 ( ) 2 2 2 2, L L L La u v d u v d uv u v u vλ λ
Ω Ω

≤ Ω ∇ ∇ + Ω ≤ ∇ ∇ +∫ ∫
G G
i . (20)  

Applying the Cauchy-Schwarz inequality and performing some algebra yields: 

 ( ) ( )( ) ( ) ( ) ( ) ( )2 2 2 2 1 1

1/ 2 1/ 22 2 2 2, 1 1L L L L H Ha u v u u v v u vλ λ Ω Ω≤ + ∇ + ∇ + = + . (21)  

We now see that a(u,v) is bounded because 

 
( )

( ) ( )
( )

1 1

,
1

H H

a u v
u v

λ
Ω Ω

≤ + < ∞  (22) 

for all non-zero u and v.  
 
The next step is to prove that a is coercive: 

 ( ) ( ) { }2 2 2 2
2 2 2 22, L L L La u u d u u d u u u u uλ λ α

Ω Ω

= Ω∇ ∇ + Ω = ∇ + ≥ ∇ +∫ ∫
G G
i , (23)  

or 

 ( ) ( )1
2, Ha u u uα Ω≥ , (24)  

where α ≡ min(1,λ).  Thus, as long as 0D
σ > , a is coercive. 

 
The final step is to prove that S(v) is bounded: 
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 ( ) ( )
( )

( )2 2 2
20

supL L L
v L

S v
S v d v f f v f

v Ω
≠ ΩΩ

⎧ ⎫⎪ ⎪= Ω ≤ ⇒ ≤ < ∞⎨ ⎬
⎪ ⎪⎩ ⎭

∫  . (25) 

Thus, S(v) is bounded if the original source function is bounded in the L 2 norm.  For our 
problems of interest this is al ways true.  W e conclude that the Galerkin PWL method yields a 
well-posed problem when applied to a diffusion equation with 0D

σ > .  

 

3.2 Order of Accuracy as Mesh is Refined 
By the Bramble-Hilbert Lemma, we know that a di scretization utilizing the standard linear basis 
functions on a tetrahedral m esh will have a second-order converg ence rate in the L 2 norm. [8]  
We can further prove that the PWL method will have a second-order convergence rate if we can 
prove the difference between the standard interpolation: 

 ( ) ( ) ( )h j j f f z z
j h f h

I u t u r t u r t u r
∈ ∈

= + +∑ ∑G G G  (26) 

and the PWL interpolation: 

 ( ) ( ) ( ),h j j f f i i z j j
j h f h i f j h

I u t u r t u r t u rβ α
∈ ∈ ∈ ∈

= + +∑ ∑ ∑ ∑G G G�  (27) 

is also second-order.  The difference between Eq. (27) and Eq. (26) is  

 ( ) ( ) ( ) ( ),
L L

h h f f i i f z j j z
f h i f j h

I u I u t u r u r t u r u rβ α
∈ ∈ ∈

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟− = − + −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑G G G G� , (28) 

which will be second-order if 

 ( ) ( ) ( )2
,f i i f

i f
u r u r O hβ

∈
− =∑ G G  (29) 

and 

 ( ) ( ) ( )2
j j z

j h
u r u r O hα

∈
− =∑ G G . (30) 

We introduce Taylor series expansions of ( )iu rG  about point frG  and of ( )ju rG  about point zr
G : 

 ( ) ( ) ( ) ( ) ( ) ( )2
, , ,1f i i f f i f f i i f f

i f i f i f
u r u r u r r r u r O hβ β β

∈ ∈ ∈

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟− = − + − ∇ +
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑G G G G G Gi  (31) 

and 
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 ( ) ( ) ( ) ( ) ( ) ( )21j j z j z j j z z
j h i f i f

u r u r a u r a r r u r O hα
∈ ∈ ∈

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟− = − + − ∇ +
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑G G G G G Gi . (32) 

The summation terms on the right-hand sides vanish if for every face we have: 

 , 1f i
i f

β
∈

=∑    and   ( ), 0f i i f
i f

r rβ
∈

− =∑ G G , (33)  

and for every cell we have 

 1j
j h

α
∈

=∑    and   ( ) 0j j z
j h

r rα
∈

− =∑ G G  . (34)  

These are in fact the equations that the PW L method uses to determ ine its cell and face 
midpoints and its basis functions.  Thus, we expect the PWL solution to converge like O(h2) in 
the L2 norm. 
 

3.3 Modal Analysis and Comparison of Methods 
We have also analyzed a sim ple test problem:  infinite medium, 2D, rectangular cells, constant 
material properties, uniform mesh spacings.  From  this test problem  we can use a sim ple mode 
analysis to determ ine how various m ethods’ solutions compare with the analytic solution and 
with each other. 
 
For this problem, the analytic solu tion of the diffusion equation can be determ ined for a source 
that can be written in terms of Fourier modes.  The 2D diffusion equation is: 

 ( ) ( ) ( ) ( )
2 2

2 2 a
d r d r

D r S r
dx dy
φ φ

σ φ
⎡ ⎤

− + + =⎢ ⎥
⎢ ⎥⎣ ⎦

G G
G G . (35) 

The source can be expanded as 

 ( ) ( )expy x wS r dw dw S iw r
∞ ∞

−∞ −∞

= ∫ ∫ GG G Gi  (36) 

The solution can also be expanded: 

 ( ) ( )expy x wr dw dw iw rφ φ
∞ ∞

−∞ −∞

= ∫ ∫ GG G Gi . (37) 

If we substitute Eqs. (36) and (37) into Eq. (35)  and perform some algebra, we find that a given 
mode of the solution is independent of other modes and satisfies: 

 2
w

w
a

S
D w

φ
σ

=
+

G
G . (38) 
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This analysis can also be applied to solutions  of discretized diffusi on equations.  W e have 
applied this to five discretization methods :  lumped PW L (LPWL), unlumped PWL (UPWL), 
Palmer’s method, lum ped bilinear continuous FEM (LBL), and unlumped bilin ear continuous 
FEM (UBL).  After extensive but straightforward algebra we find that each m ethod results in a 
solution of the form: 

 
( ) ( ){ }2 2, ,

w
w

x method x y y method y x a

S
D w f w f

φ
θ θ θ θ σ

=
+ +

G
G ,  (39) 

where andx x y yw x w yθ θ= ∆ = ∆ .  Note tha t if the f factors were unity, the solution would be 
identical to the analytic solution.  Also note that there are two different f factors in Eq. (39):  the f 
function for the given m ethod with the arguments in different orders.  The f factors for each  
method are: 

 ( ) ( ) ( )
2

3 cos1 cos
, 2

4
yx

LPWL x y
x

f
θθ

θ θ
θ

⎡ ⎤⎡ ⎤ +⎛ ⎞−
⎢ ⎥= ⎢ ⎥⎜ ⎟⎜ ⎟ ⎢ ⎥⎢ ⎥⎝ ⎠⎣ ⎦ ⎣ ⎦

, (40) 

 ( ) ( )

( )
2

1 cos 3, 2  5 3cos( )
1 1 cos

6 2cos( )

x
UPWL x y

yx
x

y

f
θ

θ θ θθ θ
θ

⎡ ⎤
⎢ ⎥⎡ ⎤− ⎢ ⎥= ⎢ ⎥ ⎢ ⎥+⎢ ⎥⎣ ⎦ ⎡ ⎤+ +⎢ ⎥⎣ ⎦ +⎢ ⎥⎣ ⎦

, (41) 

 ( ) ( )
2

1 cos
, 2  x

Palmer x y
x

f
θ

θ θ
θ

⎡ ⎤−
= ⎢ ⎥

⎢ ⎥⎣ ⎦
, (42) 

 ( ) ( ) ( )
2

2 cos1 cos
, 2

3
yx

LBL x y
x

f
θθ

θ θ
θ

⎡ ⎤⎛ ⎞⎡ ⎤ +⎛ ⎞− ⎢ ⎥⎜ ⎟= ⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠⎣ ⎦ ⎝ ⎠⎣ ⎦
, (43) 

and 

 ( ) ( )
( )2

1 cos 3, 2  
2 cos

x
UBL x y

xx
f

θ
θ θ

θθ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞−
= ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ +⎢ ⎥ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎣ ⎦⎣ ⎦

. (44) 

Each of these factors ap proaches unity in the fine mesh limit ( 0 and 0x yθ θ→ → ).  We define 
an error for each method as: 

 1method methodfε = − . (45) 

The analysis shows that solution accuracy depends not only on the mesh size, which is expected, 
but also on the “m odes” that are present in the source.  If a problem  has a non-s mooth source, 
then high-wavenumber modes (large w values) are required to model the source.  For this reason, 
to obtain accurate numerical results the mesh must resolve the wave numbers required to m odel 
any non-smooth sources.  
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Figures 5, 6, 7, 8 and 9 show plots of ( ),method x yε θ θ  for each m ethod.  Because Palmer’s and 

UBL’s ε’s depend on only one θ-variable, we have included a plot of both errors in Figure 10. 

 

Figure 5:  Error for lumped PWL 

 

Figure 6:  Error for unlumped PWL 
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Figure 7:  Error for Palmer’s method 

 

Figure 8:  Error for lumped bilinear continuous finite element 
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Figure 9:  Error for unlumped bilinear continuous finite element 

 

Figure 10:  Error comparison of Palmer’s method and unlumped bilinear continuous 

 
From these equations and figures it is easy to see that Palm er’s method’s f factors will always be 
closer or as close to un ity as the f factors of both the lum ped PWL and lumped BL methods.  In 
addition, the f values monotonically decrease from a value of unity as the problems move farther 
from the fine-mesh limit.  As a result, for simple homogeneous problems on rectangular grids we 
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expect Palmer’s method to be slightly m ore accurate than the lum ped FEMs for si ngle-mode 
problems.  This result is interesting because we anticipated that Galerkin finite element methods 
would be more accurate than Petrov-Galerk in finite element methods for discretizing the 
diffusion operator.  When we “unlump” the FEMs, the f factors in the unlumped cases no longer 
monotonically decrease with increasing cell size.  They become larger than unity, and then begin 
to decrease as the m esh size moves away from the fine-mesh limit.  Furthermore, the unlumped 
FEM f values appear to stay closer to one for a larger range of θs.  From this result, we conclude 
that we gain some accuracy if we do not lum p (or lose accuracy when we lum p) the FEMs and 
incur non-monotonic convergence away from  the fine-mesh limit.  Finally, we notice that the 
behaviors of the PW L and BL m ethods are striki ngly similar, although the accuracy of the 
lumped PWL method is always better than  the accuracy of the lum ped BL method for a given  
mode, and the accuracy of unlumped BL is always slightly better than the accuracy of unlumped 
PWL for a given mode.  This similarity indicates that the discontinuities in the derivatives of the 
PWL basis functions do not have a significant impact on the accuracy of the method. 
 

4. RESULTS 

4.1 Accuracy 

To test our implementation of the Galerkin PW L method as well as the prediction of perfection 
for linear solutions, we consider a three-dimensional problem with a linear solution that varies 
only in x.  This problem  has no source, no absorp tion, reflecting boundary conditions for the z 
and y dimensions, and Dirichlét boundary conditions of E(0,y,z)=0 and E(1,y,z)=1.  Figures 11 
and 12 show contour plots of this solution ge nerated by our Galerkin PWL method on a random 
mesh and a “Z-mesh.”[9]  From these plots (and many, similar ones), we conclude that the PW L 
method does reproduce the exact linear solution.  This property is also attained by Palm er’s 
method. 
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Figure 11:  Contour plot of a 1D linear solution on a random mesh at y=0.75.  (Solution is the 

same on other y-planes, as it should be.) 
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Figure 12:  Contour plot of a 1D linear solution on a Z-mesh at y=0.75.  (Solution is the same on 

other y-planes, as it should be.) 
 
 

A Z-mesh problem with a linear so lution in x, y, and z was also run to show that the m ethod 
produces the linear solution on a difficult m esh in all dim ensions.  This test problem  had 
absorption, a linear sou rce, and ap plied Dirichlét boundary condition s that enforced a linear 
solution on each face.  Solution co ntours should be straight diagonal lines, and they are, as we 
see in Figure 13. 
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Figure 13: Contour plot of 3D linear solution on a z-mesh, slice at y=0.75 

 
The next set of problem s tests the convergence rate of both  the PW L method and Palm er’s 
method on a series of random  meshes, and on orthogonal m eshes.  (Each random m esh was 
generated by randomly perturbing each non-boundary vertex of an orthogonal m esh.)  One test 
measures the convergence rate for a problem  with a known one-dimensional quartic solution.  
Palmer used this same problem to test the convergence rate of his finite volume method. [1]  This 
problem has no absorp tion, a quadratic sou rce, and Dirichlét boundary conditions of E(0,y,z)=0 
and E(1,y,z)=1.  The results from this test are found in Figure 14. 
 
A second test problem was developed to further test the convergence rate.  This problem includes 
absorption, has no source, and Dirichlét boundary conditions of E(0,y,z)=1 and E(1,y,z)=0. It has 
an exponential solution.  The results from this test are also found in Figure 14.  The error norm is 
calculated by taking the L2 norm of the vector of the exact solution minus the calculated solution. 
The convergence rate of the methods is determined by the slopes of the lines in Figure 14.  If the 
slope is two on the log-log pl ot, the method has a second-orde r convergence rate, w hich means 
that the error in the so lution gets decreased by a factor of four when the m esh is refined by a  
factor of two.  In Figure 14 we plot a reference line with a s lope of exactly two to compare the 
results of the num erical tests.  We also plot  errors from the two te st problems described 
previously. The results f rom the quartic solution problem appear above the black reference line.  
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These results show that for this  test problem, not much accuracy is lost when the m esh changes 
from brick to random .  The results from  the exponential solution problem  appear below the 
reference line.  These lines represent the conv ergence rates of PWL a nd Palmer’s method on 
random meshes for an exponent ial solution, and PW L on bric k meshes for an exponential 
solution.  These results show that for this test problem, the methods lose about a factor of three in 
accuracy when the m esh is chang ed from a brick m esh to a random  mesh.  In general, both  
methods show second-order accuracy and have th e same magnitude of error for both the quartic 
problem and the exponential problem 
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Figure 14:  Convergence rates of Palmer’s method and PWL on various test problems  
 
We analyzed the Galerkin PWL method in the limit of high aspect ra tios on two dim ensional 
orthogonal grids, and found that th e signs of the off-diagonal elem ents in the diffusion m atrix 
will change at cer tain ratios of ∆x and ∆y.  For ( ∆x/ ∆y)2 < 1/3, the sign change occurs for the 
vertices that are above and be low the central vertex.  For ( ∆y/ ∆x)2 < 1/3, the sign change occurs 
for the vertices to the left and right of the central vertex.  T hus, for problems with cells of high 
aspect ratio, the coefficient matrix is no longer an “M-matrix.” This raises the possibility that its 
inverse could have negative elem ents, which in turn raises the possibility that in some problems 
the method could produce unphysical oscillations and/or negative soluitons.  To test this we ran a 
problem on an orthogonal m esh with 64 cells of the 1024 total cells having 1000 to 1 aspect 
ratios (∆y/ ∆x).  These cells were contiguous, a nd inserted into the problem  at x=0.375 on a 
cubical domain of unit width.  The test problem had Dirichlét boundary conditions of E(0,y,z)=0, 
E(1,y,z)=0, E(x,0,z)=0 and E(x,1,z)=0, and reflecting boundary conditions in the z direction.  The 
source in th is problem is a “poin t source” inserted into the problem at only one v ertex in the 
middle of the region containing cells  with high aspect ratios.  Th e plot of the PW L solution is 
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shown for an equally spaced mesh in Figure 15 and a mesh with high aspect ratio cells in Figure 
16. 
 

 
Figure 15:  Contour plot at z = 0.5 of the point source problem for an equally spaced mesh with 

the source at x=0.375 and y=0.5 
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Figure 16:  Contour plot at z = 0.5 of the point source problem for a mesh with high aspect ratio 
zones with the source at x=0.375 and y=0.5. 

 
These plots show just a slice of the problem .  The slice was taken in the z direction at the value 
of z where the solution is maximum. 
 
The presence of the high-aspect-ratio cells doe s not affect the solution significantly.  In 
particular, despite the singular source, there are no unphysical oscillations or negative values in  
the PWL solution, which indicate s that the even though the m atrix is not and “M-m atrix,” its 
inverse has no negative values.  The problem s with uniform and non- uniform grids have the 
same source strength, which is input into bo th problems at a single node with the sam e 
coordinates.  The m agnitude of the solution is slightly larg er (0.6%) for the p roblem with the 
high aspect-ratio cells, but we attribute this small difference to the finer m esh spacing near the 
source. 

4.2 Efficiency 

Because PWL produc es an SPD m atrix, we can use the Conjugate Gradient (C G) method to 
solve the matrix system.  Palm er’s method must be solved using an asymmetric solver such as 
GMRES.  We expect that CG will be more efficient, and we test this  conjecture on a tim e-
dependent “tophat” problem, with the radiation diffusion equation coupled to an energy-balance 
equation for the material (which the material temperature must satisfy).  The tophat problem is a 
two-material problem, with a high-density region and a low-density tophat region.  In Figure 17, 
the red region is the high-densit y, thick region, and the blue re gion is the low-de nsity, thin 
region.  W hile the details are not  important for our purposes he re, we note that the m aterial 
opacities are tem perature-dependent and the radi ation source is a Planckian at the m aterial 
temperature. 
 

 

 
Figure 17:  The material densities of the tophat problem 

 
The boundary conditions and geom etry for this probl em are set up to sim ulate an axisymmetric 
problem on a 3D Cartesian coordinate system.  The problem domain is a wedge in the XY plane, 
going from a knife-edge on axis to finite thickness at the outer part of the cylinder.  The large flat 
faces are reflecting, the outer-cy linder boundary is  vacuum, the rightm ost triangular surface is 
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vacuum, and there is incident ra diation on th e leftmost triangular face.  In m ore detail, the 
incoming intensity is specified on the left boundary only along the low-density (blue) m aterial, 
corresponding to a  Planckian intensity at kT = 0.3.  Everywhere else on this surface, the value of 
the boundary condition is vacuum .  The initial material temperature is kT = 0.05 everywhere in 
the domain, and the simulation is run for 1000 un its of tim e.  A few plots of the sim ulation 
results are shown in Figure 18.  These plots were  generated using PWL as the diffusion solver.  
As expected, the radiation flows through the thin region and also eventually  “eats” its way into 
the thick region.  This is interes ting in itself, but our purpose here is  simply to illustrate the 
performance of CG and GMRES solvers. 

 

 

 
Time = 0.0126066 

 
Time = 348.523 
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Time = 678.523 

 
Time = 1000 

Figure 18:  The radiation temperature in the tophat problem shown at different time steps. 
 

We compared the effectiveness of both iterative methods (GMRES for Palmer and PWL, and CG 
for PWL) by comparing the number of iterations required to invert the m atrix for each reported 
time step.  The preconditioner used for all linear solvers was Algebraic Multigrid. 

 
The results of these calculations, shown in Figure 19, show that  CG for PWL requires a factor of 
three fewer iterations than does GMRES for Palmer’s method.  (Also, in general GMRES  
applied to PW L requires slightly fewer iterat ions than GMRES applied to Palm er’s method, 
which indicates that the PWL matrix is slightly better conditioned than that of Palmer’s method.)  
We further note that in a parallel computing e nvironment, CG has even m ore advantages over 
GMRES, because it requires fewer inner products per iteration, and each inner prod uct requires 
global communication.  The com bination of reduced storage for the matrix, far fewer iterations, 
reduced storage of solution-length vectors, a nd fewer inner products pe r iteration should m ake 
the Galerkin PWL method substantially more efficient than Palmer’s method. 
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Iterations counts (1 processor, tol=1e-8)
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Figure 19:  Linear solver comparisons for PWL and Palmer’s method for 1 processor. 

 
 

5. CONCLUSIONS 
Our tests show that the Galerkin P WL finite element method applied to the radiation diffusion 
equation on arbitrary polyhedral meshes has great potential for com putational improvements 
over previous m ethods.  As  we ha d hoped, th e PWL method produces results and behaviors 
almost identical to those of Palmer’s method.  Palmer’s method has a slight theoretical advantage 
on orthogonal (“brick”) grids in that it generates a highly robus t 7-point discretization whereas 
PWL generates full 27-point coupling.  However, our tests on problem s with very high-aspect-
ratio cells did not uncover any poor PW L behavior.  Further, the PWL coefficient matrix is SPD 
with allows for less storage and potentially mo re computationally efficient solutions.  W e 
conclude that the Galerkin PW L method is a very attractive option for solving diffusion 
problems on unstructured grids. 
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